Two-dimensional transition metal carbides, i.e. MXenes, and especially Ti3C2, attract attention due to their excellent combination of properties. Ti3C2 nanosheets could be the material of choice for future flexible electronics,… Click to show full abstract
Two-dimensional transition metal carbides, i.e. MXenes, and especially Ti3C2, attract attention due to their excellent combination of properties. Ti3C2 nanosheets could be the material of choice for future flexible electronics, energy storage and electromechanical nanodevices. There has been limited information available on the mechanical properties of Ti3C2, which is essential for their utilization. We have fabricated Ti3C2 nanosheets and studied their mechanical properties using direct in situ tensile tests inside a transmission electron microscope, quantitative nanomechanical mapping and theoretical calculations employing machine-learning derived potentials. Young's modulus in the direction perpendicular to the Ti3C2 basal plane was found to be 80-100 GPa. The tensile strength of Ti3C2 nanosheets reached up to 670 MPa for ~40 nm thin nanoflakes, while a strong dependence of tensile strength on nanosheet thickness was demonstrated. Theoretical calculations allowed us to study mechanical characteristics of Ti3C2 as a function of nanosheet geometrical parameters and structural defects concentration.
               
Click one of the above tabs to view related content.