Interfacial polarons have been demonstrated to play important roles in heterostructures containing polar substrates. However, most of polarons found so far are diffusive large polarons; the discovery and investigation of… Click to show full abstract
Interfacial polarons have been demonstrated to play important roles in heterostructures containing polar substrates. However, most of polarons found so far are diffusive large polarons; the discovery and investigation of small polarons at interfaces are scarce. Herein, we report the emergence of interfacial polarons in monolayer SnSe2 epitaxially grown on Nb-doped SrTiO3 (STO) surface using angle-resolved photoemission spectroscopy (ARPES) and scanning tunneling microscopy (STM). ARPES spectra taken on this heterointerface reveal a nearly flat in-gap band correlated with a significant charge modulation in real space as observed with STM. An interfacial polaronic model is proposed to ascribe this in-gap band to the formation of self-trapped small polarons induced by charge accumulation and electron-phonon coupling at the van der Waals interface of SnSe2 and STO. Such a mechanism to form interfacial polaron is expected to generally exist in similar van der Waals heterojunctions consisting of layered 2D materials and polar substrates.
               
Click one of the above tabs to view related content.