LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Capillary Balancing: Designing Frost-Resistant Lubricant-Infused Surfaces

Photo by creativecag from unsplash

Slippery lubricant-infused surfaces (SLIPS) have shown great promise for anti-frosting and anti-icing. However, small length scales associated with frost dendrites exert immense capillary suction pressure on the lubricant. This pressure… Click to show full abstract

Slippery lubricant-infused surfaces (SLIPS) have shown great promise for anti-frosting and anti-icing. However, small length scales associated with frost dendrites exert immense capillary suction pressure on the lubricant. This pressure depletes the lubricant film and is detrimental to the functionality of SLIPS. To prevent lubricant depletion, we demonstrate that interstitial spacing in SLIPS needs to be kept below those found in frost dendrites. Densely packed nanoparticles create the optimally sized nanointerstitial features in SLIPS (Nano-SLIPS). The capillary pressure stabilizing the lubricant in Nano-SLIPS balances or exceeds the capillary suction pressure by frost dendrites. We term this concept capillary balancing. Three-dimensional spatial analysis via confocal microscopy reveals that lubricants in optimally structured Nano-SLIPS are not affected throughout condensation (0 °C), extreme frosting (−20 °C to −100 °C), and traverse ice-shearing (−10 °C) tests. These surfaces preserve low ice adhesion (10–30 kPa) over 50 icing cycles, demonstrating a design principle for next-generation anti-icing surfaces.

Keywords: pressure; lubricant infused; frost; infused surfaces; capillary balancing

Journal Title: Nano Letters
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.