Morphology control represents an important strategy for the development of functional nanomaterials and has yet to be achieved in the case of promising lead-free double perovskite materials so far. In… Click to show full abstract
Morphology control represents an important strategy for the development of functional nanomaterials and has yet to be achieved in the case of promising lead-free double perovskite materials so far. In this work, high-quality Cs2AgBiX6 (X = Cl, Br, I) two-dimensional nanoplatelets were synthesized through a newly developed synthetic procedure. By analyzing the optical, morphological, and structural evolutions of the samples during synthesis, we elucidated that the growth mechanism of lead-free double perovskite nanoplatelets followed a lateral growth process from mono-octahedral-layer (half-unit-cell in thickness) cluster-based nanosheets to multilayer (three to four unit cells in thickness) nanoplatelets. Furthermore, we demonstrated that Cs2AgBiBr6 nanoplatelets possess a better performance in photocatalytic CO2 reduction compared with their nanocube counterpart. Our work demonstrates the first example with two-dimensional morphology of this important class of lead-free perovskite materials, shedding light on the synthetic manipulation and the application integration of such promising materials.
               
Click one of the above tabs to view related content.