An all-inorganic lead-free halides Cs-Cu-I system, represented by Cs3Cu2I5 and CsCu2I3, has attracted attention for their good photophysical characteristics recently. Successive works had reported their application potential in light-emitting devices.… Click to show full abstract
An all-inorganic lead-free halides Cs-Cu-I system, represented by Cs3Cu2I5 and CsCu2I3, has attracted attention for their good photophysical characteristics recently. Successive works had reported their application potential in light-emitting devices. However, there is no report for CsCu2I3 in X-ray scintillation detectors so far. We notice that CsCu2I3 may be advantageous in such an application due to the one-dimensional crystal structure, the congruent-melting feature, and the high spectral matching to some photosensors. In this work, we explore the scintillation properties and imaging application of CsCu2I3 in X-ray scintillator detector. The oriented structure is designed to enhance the imaging performance of a CsCu2I3 detector. Close-space sublimation process and nanoscale seed screening strategy are employed to realize this design by producing a large-area (25 cm2) CsCu2I3 thick film layer with the oriented nanorod structure. This CsCu2I3 detector eventually achieves a high spatial resolution of 7.5 lp mm-1 in X-ray imaging.
               
Click one of the above tabs to view related content.