LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Mixed Metal Metal-Organic Frameworks Derived Carbon Supporting ZnFe2O4/C for High-Performance Magnetic Particle Imaging.

Photo from wikipedia

Recently, magnetic particle imaging (MPI) has shown diverse biomedical applications such as cell tracking, lung perfusion, image-guided hyperthermia, and so forth. However, the currently reported MPI agents cannot achieve the… Click to show full abstract

Recently, magnetic particle imaging (MPI) has shown diverse biomedical applications such as cell tracking, lung perfusion, image-guided hyperthermia, and so forth. However, the currently reported MPI agents cannot achieve the possible theoretical detection limit of MPI (20 nM). A previous theoretical study has shown that the MPI performance of superparamagnetic iron oxide nanoparticles (SPIONs) can be enhanced by carbon supporting and metal doping. In the current study, a series of mixed metal metal-organic framework-derived carbon supporting SPIONs were synthesized by pyrolysis. Among the synthesized SPIONs, the MPI signal intensity of ZnFe2O4/C@PDA was found to be 4.7 times higher than the commercial MPI contrast (Vivotrax) having the same Fe concentration. ZnFe2O4/C@PDA also showed the highest MPI intensity in tumor-bearing-mice among all tested samples. Furthermore, they were found highly biocompatible and showed linear cell quantification. This work can open new avenues for the design and development of novel and high-performance MPI agents.

Keywords: magnetic particle; metal; carbon supporting; particle imaging; performance

Journal Title: Nano letters
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.