LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Small-Molecule-Selective Organosilica Nanoreactors for Copper-Catalyzed Azide-Alkyne Cycloaddition Reactions in Cellular and Living Systems.

Photo by sxy_selia from unsplash

We reported the synthesis of a tris(triazolylmethyl)amine (TTA)-bridged organosilane, functioning as Cu(I)-stabilizing ligands, and the installation of this building block into the backbone of mesoporous organosilica nanoparticles (TTASi) by a… Click to show full abstract

We reported the synthesis of a tris(triazolylmethyl)amine (TTA)-bridged organosilane, functioning as Cu(I)-stabilizing ligands, and the installation of this building block into the backbone of mesoporous organosilica nanoparticles (TTASi) by a sol-gel way. Upon coordinating with Cu(I), the mesoporous CuI-TTASi, with a restricted metal active center inside the pore, functions as a molecular-sieve-typed nanoreactor to efficiently perform Cu(I)-catalyzed alkyne-azide cycloaddition (CuAAC) reactions on small-molecule substrates but fails to work on macromolecules larger than the pore diameter. As a proof of concept, we witnessed the advantages of selective nanoreactors in screening protein substrates for small molecules. Also, the robust CuI-TTASi could be implanted into the body of animal models including zebrafish and mice as biorthogonal catalysts without apparent toxicity, extending its utilization in vivo ranging from fluorescent labeling to in situ drug synthesis.

Keywords: cycloaddition; molecule selective; small molecule; selective organosilica; organosilica; organosilica nanoreactors

Journal Title: Nano letters
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.