LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Superconducting Quantum Interference in Twisted van der Waals Heterostructures

Photo by sxy_selia from unsplash

We demonstrate the formation of both Josephson junctions and superconducting quantum interference devices (SQUIDs) using a dry transfer technique to stack and deterministically misalign mechanically exfoliated flakes of NbSe2. The… Click to show full abstract

We demonstrate the formation of both Josephson junctions and superconducting quantum interference devices (SQUIDs) using a dry transfer technique to stack and deterministically misalign mechanically exfoliated flakes of NbSe2. The current–voltage characteristics of the resulting twisted NbSe2–NbSe2 junctions are found to be sensitive to the misalignment angle of the crystallographic axes, opening up a new control parameter for optimization of the device performance, which is not available in thin-film-deposited junctions. A single lithographic process has then been implemented to shape Josephson junctions into SQUID geometries with typical loop areas of ∼25 μm2 and weak links ∼600 nm wide. At T = 3.75 K in an applied magnetic field, these devices display large stable current and voltage modulation depths of up to ΔIc ∼ 75% and ΔV ∼ 1.4 mV, respectively.

Keywords: interference twisted; van der; quantum interference; twisted van; superconducting quantum

Journal Title: Nano Letters
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.