LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Valley-Dependent Interlayer Excitons in Magnetic WSe2/CrI3.

Photo from wikipedia

Heterostructures of two-dimensional transition-metal dichalcogenides and ferromagnetic substrates are important candidates for the development of viable new spin- or valleytronic devices. For the prototypical bilayer of WSe2 on top of… Click to show full abstract

Heterostructures of two-dimensional transition-metal dichalcogenides and ferromagnetic substrates are important candidates for the development of viable new spin- or valleytronic devices. For the prototypical bilayer of WSe2 on top of a ferromagnetic layer of CrI3, we find substantially different coupling of both WSe2 K-valleys to the sublayer. Besides an energy splitting of a few meV, the corresponding excitons have significantly different interlayer character with charge transfer allowed at the K̅- point but forbidden at K̅+. The different exciton wave functions result in a distinctly different response to magnetic fields with g factors of about -4.4 and -4.0, respectively. By means of ab initio GW/Bethe-Salpeter equation calculations, these findings establish g factors as tool for investigating the exciton character and shedding light on the detailed quantum-mechanical interplay of magnetic and optical properties which are essential for the targeted development of optoelectronic devices.

Keywords: interlayer excitons; valley dependent; dependent interlayer; wse2; cri3

Journal Title: Nano letters
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.