LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Pure Spin Currents Driven by Colossal Spin-Orbit Coupling on Two-Dimensional Surface Conducting SrTiO3.

Photo from wikipedia

Spin accumulation is generated by passing a charge current through a ferromagnetic layer and sensed by other ferromagnetic layers downstream. Pure spin currents can also be generated in which spin… Click to show full abstract

Spin accumulation is generated by passing a charge current through a ferromagnetic layer and sensed by other ferromagnetic layers downstream. Pure spin currents can also be generated in which spin currents flow and are detected as a nonlocal resistance in which the charge current is diverted away from the voltage measurement point. Here, we report nonlocal spin-transport on two-dimensional surface-conducting SrTiO3 (STO) without a ferromagnetic spin-injector via the spin Hall effect (and inverse spin Hall effect). By applying magnetic fields to the Hall bars at different angles to the nonlocal spin-diffusion, we demonstrate an anisotropic spin-signal that is consistent with a Hanle precession of a pure spin current. We extract key transport parameters for surface-conducting STO, including: a spin Hall angle of γ ≈ (0.25 ± 0.05), a spin lifetime of τ ∼ 49 ps, and a spin diffusion length of λs ≈ (1.23 ± 0.7) μm at 2 K.

Keywords: pure spin; surface conducting; two dimensional; dimensional surface; spin; spin currents

Journal Title: Nano letters
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.