LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Disjoining Pressure of Water in Nanochannels

Photo by a2eorigins from unsplash

The disjoining pressure of water was estimated from wicking experiments in 1D silicon dioxide nanochannels of heights of 59, 87, 124, and 1015 nm. The disjoining pressure was found to… Click to show full abstract

The disjoining pressure of water was estimated from wicking experiments in 1D silicon dioxide nanochannels of heights of 59, 87, 124, and 1015 nm. The disjoining pressure was found to be as high as ∼1.5 MPa while exponentially decreasing with increasing channel height. Such a relation resulting from the curve fitting of experimentally derived data was implemented and validated in computational fluid dynamics. The implementation was then used to simulate bubble nucleation in a water-filled 59 nm nanochannel to determine the nucleation temperature. Simultaneously, experiments were conducted by nucleating a bubble in a similar 58 nm nanochannel by laser heating. The measured nucleation temperature was found to be in excellent agreement with the simulation, thus independently validating the disjoining pressure relation developed in this work. The methodology implemented here integrates experimental nanoscale physics into continuum simulations thus enabling numerical study of various phenomena where disjoining pressure plays an important role.

Keywords: disjoining pressure; nucleation; pressure water; water nanochannels; pressure

Journal Title: Nano Letters
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.