Direct SARS-CoV-2 nucleic acid testing with fast speed and high frequency is crucial for controlling the COVID-19 pandemic. Here, direct testing of SARS-CoV-2 nucleic acid is realized by field-effect transistors… Click to show full abstract
Direct SARS-CoV-2 nucleic acid testing with fast speed and high frequency is crucial for controlling the COVID-19 pandemic. Here, direct testing of SARS-CoV-2 nucleic acid is realized by field-effect transistors (FETs) with an electro-enrichable liquid gate (LG) anchored by tetrahedral DNA nanostructures (TDNs). The applied gate bias electrostatically preconcentrates nucleic acids, while the liquid gate with TDNs provides efficient analyte recognition and signal transduction. The average diagnosis time is ∼80 s, and the limit of detection approaches 1-2 copies in 100 μL of clinical samples without nucleic acid extraction and amplification. As such, TDN-LG FETs solve the dilemma of COVID-19 testing on mass scale that diagnosis accuracy and speed undergo trade-off. In addition, TDN-LG FETs achieve unamplified 10-in-1 pooled nucleic acid testing for the first time, and the results are consistent with PCR. Thus, this technology promises on-site and wide population COVID-19 screening and ensures safe world-reopening.
               
Click one of the above tabs to view related content.