LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Spectrally Stable and Efficient Pure Red CsPbI3 Quantum Dot Light-Emitting Diodes Enabled by Sequential Ligand Post-Treatment Strategy.

Photo from wikipedia

Metal halide perovskites are promising semiconductors for next-generation light-emitting diodes (LEDs) due to their high luminance, excellent color purity, and handily tunable band gap. However, it remains a great challenge… Click to show full abstract

Metal halide perovskites are promising semiconductors for next-generation light-emitting diodes (LEDs) due to their high luminance, excellent color purity, and handily tunable band gap. However, it remains a great challenge to develop perovskite LEDs (PeLEDs) with pure red emission at the wavelength of 630 nm. Herein, we report a spectrally stable and efficient pure red PeLED by employing sequential ligand post-treated CsPbI3 quantum dots (QDs). The synthesized CsPbI3 QDs with a size of ∼5 nm are treated in sequential steps using the ligands of 1-hydroxy-3-phenylpropan-2-aminium iodide (HPAI) and tributylsulfonium iodide (TBSI), respectively. The CsPbI3 QD films exhibit improved optoelectronic properties, which enables the fabrication of a pure red PeLED with a peak external quantum efficiency (EQE) of 6.4% and a stable EL emission centered at the wavelength of 630 nm. Our reported sequential ligand post-treatment strategy opens a new route to improve the stability and efficiency of PeLEDs based on QDs.

Keywords: pure red; ligand post; sequential ligand

Journal Title: Nano letters
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.