LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Overcoming Outcoupling Limit in Perovskite Light-Emitting Diodes with Enhanced Photon Recycling.

Photo from wikipedia

Photon recycling (PR), reabsorption and reemission of photons, can randomize the propagation direction of photons trapped in the waveguide mode and potentially increase the outcoupling efficiency of perovskite light-emitting diodes… Click to show full abstract

Photon recycling (PR), reabsorption and reemission of photons, can randomize the propagation direction of photons trapped in the waveguide mode and potentially increase the outcoupling efficiency of perovskite light-emitting diodes (PeLEDs). However, the contribution of PR in PeLEDs has not been experimentally quantified in real device structures. Here, we show that, with the PR effect, the external quantum efficiency (EQE) of PeLEDs remains above 15% with extraordinary thick perovskite layers up to 2200 nm, which is much higher than the outcoupling efficiency (4.3%) of the thick emissive layer device with an emission zone near the TPBi layer without PR. We designed monolithic device structures to experimentally quantify the PR contribution under device working conditions and reveal that the PR can contribute 2.4%-40.4% of the total emission in PeLEDs depending on film thickness. This work provides an important way of manipulation and quantification of PR contribution in perovskite optoelectronic devices.

Keywords: perovskite light; photon recycling; emitting diodes; light emitting; perovskite

Journal Title: Nano letters
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.