LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Programming "Atomic Substitution" in Alloy Colloidal Crystals Using DNA.

Photo from wikipedia

Although examples of colloidal crystal analogues to metal alloys have been reported, general routes for preparing 3D analogues to random substitutional alloys do not exist. Here, we use the programmability… Click to show full abstract

Although examples of colloidal crystal analogues to metal alloys have been reported, general routes for preparing 3D analogues to random substitutional alloys do not exist. Here, we use the programmability of DNA (length and sequence) to match nanoparticle component sizes, define parent lattice symmetry and substitutional order, and achieve faceted crystal habits. We synthesized substitutional alloy colloidal crystals with either ordered or random arrangements of two components (Au and Fe3O4 nanoparticles) within an otherwise identical parent lattice and crystal habit, confirmed via scanning electron microscopy and small-angle X-ray scattering. Energy dispersive X-ray spectroscopy reveals information regarding composition and local order, while the magnetic properties of Fe3O4 nanoparticles can direct different structural outcomes for different alloys in an applied magnetic field. This work constitutes a platform for independently defining substitution within multicomponent colloidal crystals, a capability that will expand the scope of functional materials that can be realized through programmable assembly.

Keywords: colloidal crystals; colloidal; substitution; dna; alloy colloidal

Journal Title: Nano letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.