LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Presence of Delocalized Ti 3d Electrons in Ultrathin Single-Crystal SrTiO3.

Photo from wikipedia

Strontium titanate (STO), with a wide spectrum of emergent properties such as ferroelectricity and superconductivity, has received significant attention in the community of strongly correlated materials. In the strain-free STO… Click to show full abstract

Strontium titanate (STO), with a wide spectrum of emergent properties such as ferroelectricity and superconductivity, has received significant attention in the community of strongly correlated materials. In the strain-free STO film grown on the SrRuO3 buffer layer, the existing polar nanoregions can facilitate room-temperature ferroelectricity when the STO film thickness approaches 10 nm. Here we show that around this thickness scale, the freestanding STO films without the influence of a substrate show the tetragonal structure at room temperature, contrasting with the cubic structure seen in bulk form. The spectroscopic measurements reveal the modified Ti-O orbital hybridization that causes the Ti ion to deviate from its nominal 4+ valency (3d0 configuration) with excess delocalized 3d electrons. Additionally, the Ti ion in TiO6 octahedron exhibits an off-center displacement. The inherent symmetry lowering in ultrathin freestanding films offers an alternative way to achieve tunable electronic structures that are of paramount importance for future technological applications.

Keywords: delocalized electrons; single crystal; ultrathin single; electrons ultrathin; presence delocalized; crystal srtio3

Journal Title: Nano letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.