LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

DNA-Based MXFs to Enhance Radiotherapy and Stimulate Robust Antitumor Immune Responses.

Photo from wikipedia

Metal "X" Frameworks (MXFs) constructed from metal ions and biomacromolecules ("X components") via coordination interactions show crystalline structures and diverse functionalities. Here, a series of MXFs composed of various metal… Click to show full abstract

Metal "X" Frameworks (MXFs) constructed from metal ions and biomacromolecules ("X components") via coordination interactions show crystalline structures and diverse functionalities. Here, a series of MXFs composed of various metal ions (e.g., Zn2+, Hf4+, Ca2+) and DNA oligodeoxynucleotides were reported. With MXF consisting of Hf4+ and CpG oligodeoxynucleotides as the example, we show that such Hf-CpG MXF can achieve high-Z elements-enhanced photon radiotherapy and further trigger robust tumor-specific immune responses, thus showing efficient tumor suppression ability. In vivo experiments showed that external beam radiotherapy applied on tumors locally injected with Hf-CpG MXF result in the thorough elimination of primary tumors, complete inhibition of tumor metastasis, and protection against tumor rechallenge by triggering robust antitumor immune responses. Our findings provide a blueprint for fabricating a variety of rationally designed MXFs with desired functions and present the strategy of stimulating whole-body systemic immune responses by only local treatment of radiotherapy.

Keywords: immune responses; antitumor immune; radiotherapy; robust antitumor; tumor

Journal Title: Nano letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.