LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The Influence of Defects on the Luminescence of Trivalent Terbium in Nanocrystalline Yttrium Orthovanadate.

Photo from wikipedia

Terbium-doped YVO4 has been considered a nonluminescent solid since the first classic studies on rare-earth-doped phosphors in the 1960s. However, we demonstrate that defect engineering of YVO4:Tb3+ nanoparticles overcomes the… Click to show full abstract

Terbium-doped YVO4 has been considered a nonluminescent solid since the first classic studies on rare-earth-doped phosphors in the 1960s. However, we demonstrate that defect engineering of YVO4:Tb3+ nanoparticles overcomes the metal-metal charge transfer (MMCT) process which is responsible for the quenching of the Tb3+ luminescence. Tetragonal (Y1-xTbx)VO4 nanoparticles obtained by colloidal precipitation showed expanded unit cells, high defect densities, and intimately mixed carbonates and hydroxides, which contribute to a shift of the MMCT states to higher energies. Consequently, we demonstrate unambiguously for the first time that Tb3+ luminescence can be excited by VO43- → Tb3+ energy transfer and by direct population of the 5D4 state in YVO4. We also discuss how thermal treatment removes these effects and shifts the quenching MMCT state to lower energies, thus highlighting the major consequences of defect density and microstructure in nanosized phosphors. Therefore, our findings ultimately show nanostructured YVO4:Tb3+ can be reclassified as a UV-excitable luminescent material.

Keywords: luminescence trivalent; trivalent terbium; terbium; luminescence; influence defects; defects luminescence

Journal Title: Nano letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.