Solid electrolytes (SEs) with superionic conductivity and interfacial stability are highly desirable for stable all-solid-state Li-metal batteries (ASSLMBs). Here, we employ neural network potential to simulate materials composed of Li,… Click to show full abstract
Solid electrolytes (SEs) with superionic conductivity and interfacial stability are highly desirable for stable all-solid-state Li-metal batteries (ASSLMBs). Here, we employ neural network potential to simulate materials composed of Li, Zr/Hf, and Cl using stochastic surface walking method and identify two potential unique layered halide SEs, named Li2ZrCl6 and Li2HfCl6, for stable ASSLMBs. The predicted halide SEs possess high Li+ conductivity and outstanding compatibility with Li metal anodes. We synthesize these SEs and demonstrate their superior stability against Li metal anodes with a record performance of 4000 h of steady lithium plating/stripping. We further fabricate the prototype stable ASSLMBs using these halide SEs without any interfacial modifications, showing small internal cathode/SE resistance (19.48 Ω cm2), high average Coulombic efficiency (∼99.48%), good rate capability (63 mAh g-1 at 1.5 C), and unprecedented cycling stability (87% capacity retention for 70 cycles at 0.5 C).
               
Click one of the above tabs to view related content.