LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Synchronous Engineering for Biomimetic Murray Porous Membranes Using Isocyanate.

Photo from wikipedia

Highly permselective and durable membranes are desirable for massive separation applications. However, currently most membranes prepared using nonsolvent-induced phase separation (NIPS) suffer from low permeability and a high fouling tendency… Click to show full abstract

Highly permselective and durable membranes are desirable for massive separation applications. However, currently most membranes prepared using nonsolvent-induced phase separation (NIPS) suffer from low permeability and a high fouling tendency due to the great challenges in a rational design and also practical approach for membrane optimization. Inspired by the natural Murray network from vascular plants, we developed a hierarchical membrane via a straightforward yet robust strategy, using isocyanate as a multifunctional additive. Thanks to the integrated functions of a phase separation regulator, blowing agent, cross-linker, and functionalization anchor of isocyanate, our strategy is featured as a perfect combination of a phase separation and chemical reaction, and it enables synchronous engineering of the membrane hierarchy on porosity and components. The representative membrane exhibits superior water permeance (334 L/m2·h·bar), protein retention (>98%), and antifouling ability (flux recover ratio ∼ 98%). This work highlights a versatile path for pursuing a highly enhanced performance of NIPS-made membranes, from the fancy perspective of Murray bionics.

Keywords: murray; using isocyanate; membrane; separation; synchronous engineering

Journal Title: Nano letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.