LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Identifying Heterozipper β-Sheet in Twisted Amyloid Aggregation.

Photo by adrian_trinkaus from unsplash

Amyloid peptide (AP) self-assembly is a hierarchical process. However, the mechanistic rule of guiding peptides to organize well-ordered nanostructure in a clear and precise manner remains poorly understood. Herein we… Click to show full abstract

Amyloid peptide (AP) self-assembly is a hierarchical process. However, the mechanistic rule of guiding peptides to organize well-ordered nanostructure in a clear and precise manner remains poorly understood. Herein we explored the molecular insight of AP motif aggregates underlying hierarchical process with helical fibrillar structure by atomic force microscope, cryo-electron microscopy (cryo-EM), and molecular dynamics simulation. AP assembly encompasses well-ordered twisted fibrils with uniform morphology, size, and periodicity. More importantly, a heterozipper β-sheet was identified in a protofilament of AP assembly determined by cryo-EM with a high resolution of 3.5 Å. Each peptide heterozipper was further composed of two antiparallel β strands and arranged by an alternative manner in a protofilament. The hydrophobic core and hydrophilic area in each zipper played the significant role for peptide assembling. This work proposed and verified the rule facilitating the basic building unit to form twisted fibrils and gave the explanation of peptide hierarchical assembling.

Keywords: heterozipper sheet; amyloid aggregation; twisted amyloid; identifying heterozipper; sheet twisted; sheet

Journal Title: Nano letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.