Surfactant-dictated syntheses of nanomaterials with well-defined shapes offer an extra dimension of control beyond nanoparticle size and chemical composition on the properties and self-assembly behaviors of colloidal materials. However, the… Click to show full abstract
Surfactant-dictated syntheses of nanomaterials with well-defined shapes offer an extra dimension of control beyond nanoparticle size and chemical composition on the properties and self-assembly behaviors of colloidal materials. However, the surfactant bilayers on nanocrystals often cause great difficulty toward DNA grafting due to their unfavorable electrostatic charges and dense surface packing. Herein a revisit to this dilemma unveils a rapid charge inversion and enhanced colloidal/chemical stabilities of cationic-bilayer-covered nanocrystals upon DNA adsorption. Decoupling this hidden scenario provides a rationale to significantly improve DNA functionalization of surfactant-capped nanocrystals. Accordingly, fully tunable DNA conjugation (via Au-S bonding) on up to seven classes of surfactant-coated metal nanounits is easily and consistently achievable. The DNA-nanocrystal complexes featuring a continuously variable DNA density function well in DNA-guided nanoassembly. Our method opens the door to a wealth of material building blocks derived by surfactant-directed nanosyntheses toward DNA-programmable, extremely diversified, and highly complicated structures and functions.
               
Click one of the above tabs to view related content.