LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Intranuclear Delivery of DNA Nanostructures via Cellular Mechanotransduction.

DNA nanostructures are attractive gene carriers for nanomedicine applications, yet their delivery to the nucleus remains inefficient. We present the application of extracellular mechanical stimuli to activate cellular mechanotransduction for… Click to show full abstract

DNA nanostructures are attractive gene carriers for nanomedicine applications, yet their delivery to the nucleus remains inefficient. We present the application of extracellular mechanical stimuli to activate cellular mechanotransduction for boosting the intranuclear delivery of DNA nanostructures. Treating mammalian cells with polythymidine-rich spherical nucleic acids (poly(T) SNAs) under gentle compression by a single coverslip leads to up to ∼50% nuclear accumulation without severe endosomal entrapment, cytotoxicity, or long-term membrane damage; no chemical modification or transfection reagent is needed. Gentle compression activates Rho-ROCK mechanotransduction and causes nuclear translocation of YAP. Joint compression and treatment with poly(T) oligonucleotides upregulate genes linked to myosin, actin filament, and nuclear import. In turn, Rho-ROCK, myosin, and importin mediate the nuclear entry of poly(T) SNAs. Treatment of endothelioma cells with poly(T) SNAs bearing antisense oligonucleotides under compression inhibits an intranuclear oncogene. Our data should inspire the marriage of DNA nanotechnology and cellular biomechanics for intranuclear applications.

Keywords: dna nanostructures; cellular mechanotransduction; dna; intranuclear delivery

Journal Title: Nano letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.