The rapid development of solid-state lighting technology has attracted much attention for searching efficient and stable luminescent materials, especially the single-component white-light emitter. Here, we adopt a facile ion-doping technology… Click to show full abstract
The rapid development of solid-state lighting technology has attracted much attention for searching efficient and stable luminescent materials, especially the single-component white-light emitter. Here, we adopt a facile ion-doping technology to synthesize vacancy-ordered double perovskite Cs2ZrCl6:Sb. The introduction of Sb3+ ions with a 5s2 active lone pair into Cs2ZrCl6 host stimulates the singlet (blue) and triplet (orange) states emission of Sb3+ ions, and their relative emission intensity can be tuned through the energy transfer from singlet to triplet states. Benefiting from the dual-band emission as a pair of perfect complementary colors, the optimum Cs2ZrCl6:1.5%Sb exhibits a high-quality white emission with a color-rendering index of 96. By employing Cs2ZrCl6:1.5%Sb as the down-conversion phosphor, stable single-component white light-emitting diodes with a record half-lifetime of 2003 h were further fabricated. This study puts forward an effective ion-doping strategy to design single-component white-light emitter, making practical applications of them in lighting technologies a real possibility.
               
Click one of the above tabs to view related content.