LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

ZnF2-Assisted Synthesis of Highly Luminescent InP/ZnSe/ZnS Quantum Dots for Efficient and Stable Electroluminescence.

Photo from wikipedia

High-quality InP-based quantum dots (QDs) have become very promising, environmentally benign light emitters for display applications, but their synthesis generally entails hazardous hydrofluoric acid. Here, we present a highly facile… Click to show full abstract

High-quality InP-based quantum dots (QDs) have become very promising, environmentally benign light emitters for display applications, but their synthesis generally entails hazardous hydrofluoric acid. Here, we present a highly facile route to InP/ZnSe/ZnS core/shell/shell QDs with a near-unity photoluminescence quantum yield. As the key additive, the inorganic salt ZnF2 mildly reacts with carboxylic acid at a high temperature and in situ generates HF, which eliminates surface oxide impurities, thus facilitating epitaxial shell growth. The resulting InP/ZnSe/ZnS QDs exhibit a narrower emission line width and better thermal stability in comparison with QDs synthesized with hydrofluoric acid. Light-emitting diodes using large-sized InP/ZnSe/ZnS QDs without replacing original ligands achieve the highest peak external quantum efficiency of 22.2%, to the best of our knowledge, along with a maximum brightness of >110 000 cd/m2 and a T95 lifetime of >32 000 h at 100 cd/m2. This safe approach is anticipated to be applied for a wide range of III-V QDs.

Keywords: quantum dots; znse zns; inp znse

Journal Title: Nano letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.