LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Confining High-Valence Iridium Single Sites onto Nickel Oxyhydroxide for Robust Oxygen Evolution.

Photo from wikipedia

Enhancing activity and stability of iridium- (Ir-) based oxygen evolution reaction (OER) catalysts is of great significance in practice. Here, we report a vacancy-rich nickel hydroxide stabilized Ir single-atom catalyst… Click to show full abstract

Enhancing activity and stability of iridium- (Ir-) based oxygen evolution reaction (OER) catalysts is of great significance in practice. Here, we report a vacancy-rich nickel hydroxide stabilized Ir single-atom catalyst (Ir1-Ni(OH)2), which achieves long-term OER stability over 260 h and much higher mass activity than commercial IrO2 in alkaline media. In situ X-ray absorption spectroscopy analysis certifies the obvious structure reconstruction of catalyst in OER. As a result, an active structure in which high-valence and peripheral oxygen ligands-rich Ir sites are confined onto the nickel oxyhydroxide surface is formed. In addition, the precise introduction of atomized Ir not only surmounts the large-range dissolution and agglomeration of Ir but also suppresses the dissolution of substrate in OER. Theoretical calculations further account for the activation of Ir single atoms and the promotion of oxygen generation by high-valence Ir, and they reveal that the deprotonation process of adsorbed OH is rate-determining.

Keywords: oxygen evolution; onto nickel; oxygen; high valence; nickel oxyhydroxide

Journal Title: Nano letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.