LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Uncovering Topological Edge States in Twisted Bilayer Graphene.

Photo from wikipedia

Twisted bilayer graphene (t-BLG) has recently been introduced as a rich physical platform displaying flat electronic bands, strongly correlated states, and unconventional superconductivity. Studies have hinted at an unusual Z2… Click to show full abstract

Twisted bilayer graphene (t-BLG) has recently been introduced as a rich physical platform displaying flat electronic bands, strongly correlated states, and unconventional superconductivity. Studies have hinted at an unusual Z2 topology of the moiré Dirac bands of t-BLG. However, direct experimental evidence of this moiré band topology and associated edge states is still lacking. Herein, using superconducting quantum interferometry, we reconstructed the spatial supercurrent distribution in t-BLG Josephson junctions and revealed the presence of edge states located in the superlattice band gaps. The absence of edge conduction in high resistance regions just outside the superlattice band gap confirms that the edge transport originates from the filling of electronic states located inside the band gap and further allows us to exclude several other edge conduction mechanisms. These results confirm the unusual moiré band topology of twisted bilayer graphene and will stimulate further research to explore its consequences.

Keywords: topology; bilayer graphene; edge states; twisted bilayer; edge

Journal Title: Nano letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.