LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Anomalous Magneto-Optical Response and Chiral Interface of Dipolar Excitons at Twisted Valleys.

Photo from wikipedia

An anomalous magneto-optical spectrum is discovered for dipolar valley excitons in twisted double-layer transition metal dichalcogenides, where the in-plane magnetic field induces a sizable multiplet splitting of exciton states inside… Click to show full abstract

An anomalous magneto-optical spectrum is discovered for dipolar valley excitons in twisted double-layer transition metal dichalcogenides, where the in-plane magnetic field induces a sizable multiplet splitting of exciton states inside the light cone. Chiral dispersions of the split branches make possible an efficient optical injection of the unidirectional exciton current. We also find an analog effect with a modest heterostrain replacing the magnetic field for introducing large splitting and chiral dispersions in the light cone. Angular orientation of the photoinjected exciton flow can be controlled by strain, with left-right unidirectionality selected by circular polarization.

Keywords: magneto optical; chiral interface; anomalous magneto; response chiral; optical response; excitons twisted

Journal Title: Nano letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.