An anomalous magneto-optical spectrum is discovered for dipolar valley excitons in twisted double-layer transition metal dichalcogenides, where the in-plane magnetic field induces a sizable multiplet splitting of exciton states inside… Click to show full abstract
An anomalous magneto-optical spectrum is discovered for dipolar valley excitons in twisted double-layer transition metal dichalcogenides, where the in-plane magnetic field induces a sizable multiplet splitting of exciton states inside the light cone. Chiral dispersions of the split branches make possible an efficient optical injection of the unidirectional exciton current. We also find an analog effect with a modest heterostrain replacing the magnetic field for introducing large splitting and chiral dispersions in the light cone. Angular orientation of the photoinjected exciton flow can be controlled by strain, with left-right unidirectionality selected by circular polarization.
               
Click one of the above tabs to view related content.