LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Helper-Polymer Based Five-Element Nanoparticles (FNPs) for Lung-Specific mRNA Delivery with Long-Term Stability after Lyophilization.

Photo by jupp from unsplash

Lipid nanoparticles (LNPs) carrying therapeutic mRNAs hold great promise in treating lung-associated diseases like viral infections, tumors, and genetic disorders. However, because of their thermodynamically unstable nature, traditional LNPs carrying… Click to show full abstract

Lipid nanoparticles (LNPs) carrying therapeutic mRNAs hold great promise in treating lung-associated diseases like viral infections, tumors, and genetic disorders. However, because of their thermodynamically unstable nature, traditional LNPs carrying mRNAs need to be stored at low temperatures, which hinders their prevalence. Herein, an efficient lung-specific mRNA delivery platform named five-element nanoparticles (FNPs) is developed in which helper-polymer poly(β-amino esters) (PBAEs) and DOTAP are used in combination. The new strategy endows FNPs with high stability by increasing the charge repulsion between nanoparticles and the binding force of the aliphatic chains within the nanoparticles. The structure-activity relationship (SAR) shows that PBAEs with E1 end-caps, higher degrees of polymerization, and longer alkyl side chains exhibit higher hit rates. Lyophilized FNP formulations can be stably stored at 4 °C for at least 6 months. Overall, a novel delivery platform with high efficiency, specificity, and stability was developed for advancing mRNA-based therapies for lung-associated diseases.

Keywords: specific mrna; mrna delivery; lung specific; lung; stability; delivery

Journal Title: Nano letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.