LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Genetically Engineered Nanoparticles of Asymmetric Triblock Polypeptide with a Platinum(IV) Cargo Outperforms a Platinum(II) Analog and Free Drug in a Murine Cancer Model.

Photo from wikipedia

The development of platinum(Pt)-drugs for cancer therapy has stalled, as no new Pt-drugs have been approved in over a decade. Packaging small molecule drugs into nanoparticles is a way to… Click to show full abstract

The development of platinum(Pt)-drugs for cancer therapy has stalled, as no new Pt-drugs have been approved in over a decade. Packaging small molecule drugs into nanoparticles is a way to enhance their therapeutic efficacy. To date, there has been no direct comparison of relative merits of the choice of Pt oxidation state in the same nanoparticle system that would allow its optimal design. To address this lacuna, we designed a recombinant asymmetric triblock polypeptide (ATBP) that self-assembles into rod-shaped micelles and chelates Pt(II) or enables covalent conjugation of Pt(IV) with similar morphology and stability. Both ATBP-Pt(II) and ATBP-Pt(IV) nanoparticles enhanced the half-life of Pt by ∼45-fold, but ATBP-Pt(IV) had superior tumor regression efficacy compared to ATBP-Pt(II) and cisplatin. These results suggest loading Pt(IV) into genetically engineered nanoparticles may yield a new generation of more effective platinum-drug nanoformulations.

Keywords: cancer; engineered nanoparticles; asymmetric triblock; platinum; triblock polypeptide; genetically engineered

Journal Title: Nano letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.