LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Unveiling the Effect of Superlattice Interfaces and Intermixing on Phase Change Memory Performance.

Photo from wikipedia

Superlattice (SL) phase change materials have shown promise to reduce the switching current and resistance drift of phase change memory (PCM). However, the effects of internal SL interfaces and intermixing… Click to show full abstract

Superlattice (SL) phase change materials have shown promise to reduce the switching current and resistance drift of phase change memory (PCM). However, the effects of internal SL interfaces and intermixing on PCM performance remain unexplored, although these are essential to understand and ensure reliable memory operation. Here, using nanometer-thin layers of Ge2Sb2Te5 and Sb2Te3 in SL-PCM, we uncover that both switching current density (Jreset) and resistance drift coefficient (v) decrease as the SL period thickness is reduced (i.e., higher interface density); however, interface intermixing within the SL increases both. The signatures of distinct versus intermixed interfaces also show up in transmission electron microscopy, X-ray diffraction, and thermal conductivity measurements of our SL films. Combining the lessons learned, we simultaneously achieve low Jreset ≈ 3-4 MA/cm2 and ultralow v ≈ 0.002 in mushroom-cell SL-PCM with ∼110 nm bottom contact diameter, thus advancing SL-PCM technology for high-density storage and neuromorphic applications.

Keywords: change memory; interfaces intermixing; phase change; phase

Journal Title: Nano letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.