LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Facet Engineering for Amplified Spontaneous Emission in Metal Halide Perovskite Nanocrystals.

Photo by montaukproject from unsplash

Auger recombination and thermalization time are detrimental in reducing the gain threshold of optically pumped semiconductor nanocrystal (NC) lasers for future on-chip nanophotonic devices. Here, we report the design strategy… Click to show full abstract

Auger recombination and thermalization time are detrimental in reducing the gain threshold of optically pumped semiconductor nanocrystal (NC) lasers for future on-chip nanophotonic devices. Here, we report the design strategy of facet engineering to reduce the gain threshold of amplified spontaneous emission by manyfold in NCs of the same concentration and edge length. We achieved this hallmark result by controlling the Auger recombination rates dominated by processes involving NC volume and thermalization time to the emitting states by optimizing the number of facets from 6 (cube) to 12 (rhombic dodecahedron) and 26 (rhombicuboctahedrons) in CsPbBr3 NCs. For instance, we demonstrate a 2-fold reduction in Auger recombination rates and thermalization time with increased number of facets. The gain threshold can be further reduced ∼50% by decreasing the sample temperature to 4 K. Our systematic studies offer a new method to reduce the gain threshold that ultimately forms the basis of nanolasers.

Keywords: gain threshold; spontaneous emission; amplified spontaneous; facet engineering

Journal Title: Nano letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.