LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Suppressed Lattice Oxygen Release via Ni/Mn Doping from Spent LiNi0.5Mn0.3Co0.2O2 toward High-Energy Layered-Oxide Cathodes.

Photo by pchung_hcmc from unsplash

LiCoO2 has suffered from poor stability under high voltage as a result of insufficient Co-O bonding that causes lattice oxygen release and lattice distortions. Herein, we fabricated a high-voltage LiCoO2… Click to show full abstract

LiCoO2 has suffered from poor stability under high voltage as a result of insufficient Co-O bonding that causes lattice oxygen release and lattice distortions. Herein, we fabricated a high-voltage LiCoO2 at 4.6 V by doping with Ni/Mn atoms, which are obtained from spent LiNi0.5Mn0.3Co0.2O2 cathode materials. The as-prepared high-voltage LiCoO2 with Ni/Mn substitutional dopants in the Co layer enhances Co-O bonding that suppresses oxygen release and harmful phase transformation during delithiation, thus stabilizing the layered structure and leading to a superior electrochemical performance at 4.6 V. The pouch cell of modified LiCoO2 exhibits a capacity retention of 85.1% over 100 cycles at 4.5 V (vs graphite). We found that our strategy is applicable for degraded LiCoO2, and the regenerated LiCoO2 using this strategy exhibits excellent capacity retention (84.1%, 100 cycles) at 4.6 V. Our strategy paves the way for the direct conversion of spent batteries into high-energy-density batteries.

Keywords: spent lini0; lini0 5mn0; oxygen release; oxygen; lattice oxygen

Journal Title: Nano letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.