LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Cavity-Enhanced 2D Material Quantum Emitters Deterministically Integrated with Silicon Nitride Microresonators

Photo from wikipedia

Optically active defects in 2D materials, such as hexagonal boron nitride (hBN) and transition-metal dichalcogenides (TMDs), are an attractive class of single-photon emitters with high brightness, operation up to room… Click to show full abstract

Optically active defects in 2D materials, such as hexagonal boron nitride (hBN) and transition-metal dichalcogenides (TMDs), are an attractive class of single-photon emitters with high brightness, operation up to room temperature, site-specific engineering of emitter arrays with strain and irradiation techniques, and tunability with external electric fields. In this work, we demonstrate a novel approach to precisely align and embed hBN and TMDs within background-free silicon nitride microring resonators. Through the Purcell effect, high-purity hBN emitters exhibit a cavity-enhanced spectral coupling efficiency of up to 46% at room temperature, exceeding the theoretical limit (up to 40%) for cavity-free waveguide-emitter coupling and demonstrating nearly a 1 order of magnitude improvement over previous work. The devices are fabricated with a CMOS-compatible process and exhibit no degradation of the 2D material optical properties, robustness to thermal annealing, and 100 nm positioning accuracy of quantum emitters within single-mode waveguides, opening a path for scalable quantum photonic chips with on-demand single-photon sources.

Keywords: cavity; cavity enhanced; silicon nitride; quantum; quantum emitters

Journal Title: Nano Letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.