LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Spherical Templating of CoSe2 Nanoparticle-Decorated MXenes for Lithium-Sulfur Batteries.

Photo by john_cameron from unsplash

Two-dimensional MXenes produce competitive performances when incorporated into lithium-sulfur batteries (LSBs), solving key problems such as the poor electronic conductivity of sulfur and dissolution of its polysulfide intermediates. However, MXene… Click to show full abstract

Two-dimensional MXenes produce competitive performances when incorporated into lithium-sulfur batteries (LSBs), solving key problems such as the poor electronic conductivity of sulfur and dissolution of its polysulfide intermediates. However, MXene nanosheets are known to easily aggregate and restack during electrode fabrication, filtration, or water removal, limiting their practical applicability. Furthermore, in complex electrocatalytic reactions like the multistep sulfur reduction process in LSBs, MXene alone is insufficient to ensure an optimal reaction pathway. In this work, we demonstrate for the first time a loose templating of sulfur spheres using Ti3C2Tx MXene nanosheets decorated with polymorphic CoSe2 nanoparticles. This work shows that the templating of sulfur spheres using nanoparticle-decorated MXene nanosheets can prevent nanosheet aggregation and exert a strong electrocatalytic effect, thereby enabling improved reaction kinetics and battery performance. The S@MXene-CoSe2 cathode demonstrated a long cycle life of 1000 cycles and a low capacity decay rate of 0.06% per cycle in LSBs.

Keywords: lithium sulfur; mxene nanosheets; sulfur batteries; nanoparticle decorated

Journal Title: Nano letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.