LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Terahertz Pulse Generation with Binary Phase Control in Nonlinear InAs Metasurface.

Photo from wikipedia

The effect of terahertz (THz) pulse generation has revolutionized broadband coherent spectroscopy and imaging at THz frequencies. However, THz pulses typically lack spatial structure, whereas structured beams are becoming essential… Click to show full abstract

The effect of terahertz (THz) pulse generation has revolutionized broadband coherent spectroscopy and imaging at THz frequencies. However, THz pulses typically lack spatial structure, whereas structured beams are becoming essential for advanced spectroscopy applications. Nonlinear optical metasurfaces with nanoscale THz emitters can provide a solution by defining the beam structure at the generation stage. We develop a nonlinear InAs metasurface consisting of nanoscale optical resonators for simultaneous generation and structuring of THz beams. We find that THz pulse generation in the resonators is governed by optical rectification. It is more efficient than in ZnTe crystals, and it allows us to control the pulse polarity and amplitude, offering a platform for realizing binary-phase THz metasurfaces. To illustrate this capability, we demonstrate an InAs metalens, which simultaneously generates and focuses THz pulses. The control of spatiotemporal structure using nanoscale emitters opens doors for THz beam engineering and advanced spectroscopy and imaging applications.

Keywords: spectroscopy; generation; binary phase; inas metasurface; nonlinear inas; pulse generation

Journal Title: Nano letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.