Cesium lead halide perovskite nanocrystals (PNCs) exhibit promising prospects for application in optoelectronic devices. However, electroactivated near-infrared (NIR) PNC light-emitting diodes (LEDs) with emission peaks over 800 nm have not… Click to show full abstract
Cesium lead halide perovskite nanocrystals (PNCs) exhibit promising prospects for application in optoelectronic devices. However, electroactivated near-infrared (NIR) PNC light-emitting diodes (LEDs) with emission peaks over 800 nm have not been achieved. Herein, we demonstrate the electroactivated NIR PNC LEDs based on Yb3+-doped CsPb(Cl1-xBrx)3 PNCs with extraordinary high NIR photoluminescence quantum yields over 170%. The fabricated NIR LEDs possess an irradiance of 584.7 μW cm-2, an EQE of 1.2%, and a turn-on voltage of 3.1 V. The ultrafast quantum cutting process from the PNC host to Yb3+ has been revealed as the main mechanism of electroluminescence (EL)-activated Yb3+ for the first time via exploring how the trend between the EL intensity of PNC and Yb3+ varies with different voltages along with the tendency of temperature- and doping-concentration-dependent PL and EL spectra. This work will extend the application of PNCs to optical communication, night-vision devices, and biomedical imaging.
               
Click one of the above tabs to view related content.