LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ultralow-Loss Phonon Polaritons in the Isotope-Enriched α-MoO3.

Photo by 20164rhodi from unsplash

α-MoO3, a natural van der Waals (vdWs) material, has received wide attention in nano-optics for supporting highly confined anisotropic phonon polaritons (PhPs) from the mid-infrared to the terahertz region, which… Click to show full abstract

α-MoO3, a natural van der Waals (vdWs) material, has received wide attention in nano-optics for supporting highly confined anisotropic phonon polaritons (PhPs) from the mid-infrared to the terahertz region, which opens a new route for manipulating light at the nanoscale. However, its optical loss hinders light manipulation with high efficiency. This work demonstrates that the isotope-enriched Mo element enables ultralow-loss PhPs in the α-MoO3. Raman spectra reveal that the isotope-enriched Mo element in the α-MoO3 allows different optical phonon frequencies by efficiently altering the Reststrahlen band's dispersion. The Mo isotope-enriched α-MoO3 significantly reduces the PhPs' optical loss due to efficient optical coherence, which enhances the propagation length revealed by infrared nanoimaging. These findings suggest that the isotope-enriched α-MoO3 is a new feasible 2D material with an ultralow optical loss for possible high-performance integrated photonics and quantum optics devices.

Keywords: ultralow loss; loss; phonon polaritons; enriched moo3; isotope enriched

Journal Title: Nano letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.