LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

In Situ Atomic-Scale Observation of 5-Fold Twin Formation in Nanoscale Crystal under Mechanical Loading

Photo from wikipedia

A 5-fold twin is usually observed in nanostructured metals after mechanical tests and/or annealing treatment. However, the formation mechanism of a 5-fold twin has not been fully elaborated, due to… Click to show full abstract

A 5-fold twin is usually observed in nanostructured metals after mechanical tests and/or annealing treatment. However, the formation mechanism of a 5-fold twin has not been fully elaborated, due to the lack of direct time-resolved atomic-scale observation. Here, by using in situ nanomechanical testing combined with atomistic simulations, we show that sequential twinning slip in varying slip systems and decomposition of high-energy grain boundaries account for the 5-fold twin formation in a nanoscale gold single crystal under bending as well as the reversible formation and dissolution of a 5-fold twin in a nanocrystal with a preexisting twin under tension and shearing. Moreover, we find that the complex stress state in the neck area results in the breakdown of Schmid’s law, causing 5-fold twin formation in a gold nanocrystal with a twin boundary parallel to the loading direction. These findings enrich our understanding of the formation process of high-order twin structures in nanostructured metals.

Keywords: fold twin; twin formation; atomic scale; scale observation; formation

Journal Title: Nano Letters
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.