LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Microstructure of the Li-Al-O Second Phases in Garnet Solid Electrolytes.

Photo by miteneva from unsplash

The microstructure of the Li7La3Zr2O12 (LLZO) garnet solid electrolyte is critical for its performance in all-solid-state lithium-ion battery. During conventional high-temperature sintering, second phases are generated at the grain boundaries… Click to show full abstract

The microstructure of the Li7La3Zr2O12 (LLZO) garnet solid electrolyte is critical for its performance in all-solid-state lithium-ion battery. During conventional high-temperature sintering, second phases are generated at the grain boundaries due to the reaction between sintering aids and LLZO, which have an enormous effect on the performances of LLZO. However, a detailed structure study of the second phases and their impact on physical properties is lacking. Here, crystal structures of the second phases in LLZO pellets are studied in detail by transmission electron microscopy. Three different crystal structures of Li-Al-O second phases, γ-LiAlO2, α-Li5AlO4, and β-Li5AlO4 were identified, and atomic-scale lattice information was obtained by applying low-dose high-resolution imaging for these electron-beam-sensitive second phases. On this basis, the structure-property relationship of these structures was explored. It was found that sintering aids with a higher Li/Al ratio are beneficial to form Li-rich second phases, which result in more highly ionic conductive LLZO.

Keywords: phases garnet; second phases; microstructure second; garnet solid; solid electrolytes

Journal Title: Nano letters
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.