LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Magnetic Amplification at Yb3+ "Designer Defects" in the van der Waals Ferromagnet CrI3.

Photo by ldxcreative from unsplash

The two-dimensional (2D) van der Waals ferromagnet CrI3 has been doped with the magnetic optical impurity Yb3+ to yield materials that display sharp multiline Yb3+ photoluminescence (PL) controlled by the… Click to show full abstract

The two-dimensional (2D) van der Waals ferromagnet CrI3 has been doped with the magnetic optical impurity Yb3+ to yield materials that display sharp multiline Yb3+ photoluminescence (PL) controlled by the magnetism of CrI3. Magneto-PL shows that Yb3+ magnetization is pinned to the magnetization of CrI3. An effective internal field of ∼10 T at Yb3+ is estimated, attributed to strong in-plane Yb3+-Cr3+ superexchange coupling. The anomalously low energy of Yb3+ PL in CrI3 reflects relatively high Yb3+-I- covalency, contributing to Yb3+-Cr3+ superexchange coupling. The Yb3+ PL energy and line width both reveal the effects of spontaneous zero-field CrI3 magnetic ordering within 2D layers below TC, despite the absence of net magnetization in multilayer samples. These results illustrate the use of optical impurities as "designer defects" to introduce unique functionality to 2D magnets.

Keywords: van der; cri3; der waals; yb3; ferromagnet cri3; waals ferromagnet

Journal Title: Nano letters
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.