LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Interaction between Single Metal Atoms and UiO-66 Framework Revealed by Low-Dose Imaging.

Photo from wikipedia

Atomically dispersed metals encapsulated in metal-organic frameworks (MOFs) have attracted extensive attention in catalysis and energy fields. Amino groups were considered conducive to the formation of single atom catalysts (SACs)… Click to show full abstract

Atomically dispersed metals encapsulated in metal-organic frameworks (MOFs) have attracted extensive attention in catalysis and energy fields. Amino groups were considered conducive to the formation of single atom catalysts (SACs) due to the strong metal-linker interactions. Here, atomic details of Pt1@UiO-66 and Pd1@UiO-66-NH2 are revealed using low-dose integrated differential phase contrast scanning transmission electron microscopy (iDPC-STEM). Single Pt atoms locate on the benzene ring of p-benzenedicarboxylic acid (BDC) linkers in Pt@UiO-66, while single Pd atoms are adsorbed by the amino groups in Pd@UiO-66-NH2. However, Pt@UiO-66-NH2 and Pd@UiO-66 show obvious clusters. Therefore, amino groups do not always favor the formation of SACs, and density functional theory (DFT) calculations indicate that a moderate binding strength between metals and MOFs is preferred. These results directly reveal the adsorption sites of single metal atoms in UiO-66 family, paving the way for understanding the interaction between single metal atoms and the MOFs.

Keywords: metal atoms; single metal; atoms uio; interaction single; metal; low dose

Journal Title: Nano letters
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.