Bernal-stacked bilayer graphene exhibits a wealth of interaction-driven phenomena, including robust even-denominator fractional quantum Hall states. We construct Fabry-Pérot interferometers using a split-gate design and present measurements of the Aharonov-Bohm… Click to show full abstract
Bernal-stacked bilayer graphene exhibits a wealth of interaction-driven phenomena, including robust even-denominator fractional quantum Hall states. We construct Fabry-Pérot interferometers using a split-gate design and present measurements of the Aharonov-Bohm oscillations. The edge state velocity is found to be approximately 6 × 104 m/s at filling factor ν = 2 and decreases with increasing filling factor. The dc bias and temperature dependence of the interference point to electron-electron interaction induced decoherence mechanisms. These results pave the way for the quest of fractional and non-Abelian braiding statistics in this promising device platform.
               
Click one of the above tabs to view related content.