LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Unveiling Hierarchical Dendritic Co3O4-SnO2 Heterostructure for Efficient Water Purification.

Photo by prachi30gautam from unsplash

The construction of a desirable, environmentally friendly, and cost-effective nanoheterostructure photoanode to treat refractory organics is critical and challenging. Herein, we unveiled a hierarchical dendritic Co3O4-SnO2 heterostructure via a sequential… Click to show full abstract

The construction of a desirable, environmentally friendly, and cost-effective nanoheterostructure photoanode to treat refractory organics is critical and challenging. Herein, we unveiled a hierarchical dendritic Co3O4-SnO2 heterostructure via a sequential hydrothermal process. The time of the secondary hydrothermal process can control the size of the ultrathin SnO2 nanosheets on the basis of the Ostwald solidification mass conservation principle. Ti/Co3O4-SnO2-168h with critical growth size demonstrated a photoelectrocatalysis degradation rate of ∼93.3% for a high dye concentrate of 90 mg/L with acceptable long-term cyclability and durability over reported Co3O4-based electrodes because of the large electrochemically active area, low charge transfer resistance, and high photocurrent intensity. To gain insight into the photoelectric synergy, we proposed a type-II heterojunction between Co3O4 and SnO2, which prevents photogenerated carriers' recombination and improves the generation of dominant active species •O2-, 1O2, and h+. This work uncovered the Ti/Co3O4-SnO2-168 as a promising catalyst and provided a simple and inexpensive assembly strategy to obtain binary integrated nanohybrids with targeted functionalities.

Keywords: sno2 heterostructure; hierarchical dendritic; co3o4 sno2; co3o4; dendritic co3o4

Journal Title: Nano letters
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.