LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The Doping Effect on the Intrinsic Ferroelectricity in Hafnium Oxide-Based Nano-Ferroelectric Devices.

Photo from wikipedia

Hafnium oxide (HfO2)-based ferroelectric tunnel junctions (FTJs) have been extensively evaluated for high-speed and low-power memory applications. Herein, we investigated the influence of Al content in HfAlO thin films on… Click to show full abstract

Hafnium oxide (HfO2)-based ferroelectric tunnel junctions (FTJs) have been extensively evaluated for high-speed and low-power memory applications. Herein, we investigated the influence of Al content in HfAlO thin films on the ferroelectric characteristics of HfAlO-based FTJs. Among HfAlO devices with different Hf/Al ratios (20:1, 34:1, and 50:1), the HfAlO device with Hf/Al ratio of 34:1 exhibited the highest remanent polarization and excellent memory characteristics and, thereby, the best ferroelectricity among the investigated devices. Furthermore, first-principal analyses verified that HfAlO thin films with Hf/Al ratio of 34:1 promoted the formation of the orthorhombic phase against the paraelectric phase as well as alumina impurities and, thus, enhanced the ferroelectricity of the device, providing theoretical support for supporting experimental results. The findings of this study provide insights for developing HfAlO-based FTJs for next-generation in-memory computing applications.

Keywords: doping effect; effect intrinsic; ferroelectricity; hafnium oxide; intrinsic ferroelectricity

Journal Title: Nano letters
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.