LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Two-Dimensional Covalent Framework Derived Nonprecious Transition Metal Single-Atomic-Site Electrocatalyst toward High-Efficiency Oxygen Reduction.

Photo by homajob from unsplash

Designing an active, stable, and nonprecious metal catalyst substitute for Pt in the oxygen reduction reaction (ORR) is highly demanded for energy-efficient and cost-effective prototype devices. Single-atomic-site catalysts (SASCs) have… Click to show full abstract

Designing an active, stable, and nonprecious metal catalyst substitute for Pt in the oxygen reduction reaction (ORR) is highly demanded for energy-efficient and cost-effective prototype devices. Single-atomic-site catalysts (SASCs) have been widely concerning because of their maximum atomic utilization and precise structural regulation. Despite being challenging, the controllable synthesis of SASCs is crucial for optimizing ORR activity. Here, we demonstrate an ultrathin organometallic framework template-assisted pyrolysis strategy to synthesize SASCs with a unique two-dimensional (2D) architecture. Electrochemical measurements revealed that Fe-SASCs displayed an excellent ORR activity in an alkaline media, having a half-wave potential and a diffusion-limited current density comparable to those of commercial Pt/C. Remarkably, the durability and methanol tolerance of Fe-SASCs were even superior to those of Pt/C. Furthermore, Fe-SASCs displayed a maximum power density of 142 mW cm-2 with a current density of 235 mA cm-2 as a cathode catalyst in a zinc-air battery, showing its great potential for practical applications.

Keywords: two dimensional; oxygen reduction; atomic site; single atomic; metal

Journal Title: Nano letters
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.