LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Tunable Topological States in Stacked Chern Insulator Bilayers.

Photo from wikipedia

The emergence of intrinsic quantum anomalous Hall (QAH) insulators with a long-range ferromagnetic (FM) order triggers unprecedented prosperity for combining topology and magnetism in low dimensions. Built upon atom-thin Chern… Click to show full abstract

The emergence of intrinsic quantum anomalous Hall (QAH) insulators with a long-range ferromagnetic (FM) order triggers unprecedented prosperity for combining topology and magnetism in low dimensions. Built upon atom-thin Chern insulator monolayer MnBr3, we propose that the topologically nontrivial electronic states can be systematically tuned by inherent magnetic orders and external electric/optical fields in stacked Chern insulator bilayers. The FM bilayer illustrates a high-Chern-number QAH state characterized by both quantized Hall plateaus and specific magneto-optical Kerr angles. In antiferromagnetic bilayers, Berry curvature singularity induced by electrostatic fields or lasers emerges, which further leads to a novel implementation of the layer Hall effect depending on the chirality of irradiated circularly polarized light. These results demonstrate that abundant tunable topological properties can be achieved in stacked Chern insulator bilayers, thereby suggesting a universal routine to modulate d-orbital-dominated topological Dirac fermions.

Keywords: tunable topological; insulator; stacked chern; insulator bilayers; topological states; chern insulator

Journal Title: Nano letters
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.