LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Extending Plasmonic Enhancement Limit with Blocked Electron Tunneling by Monolayer Hexagonal Boron Nitride.

Photo from wikipedia

Fabricating ultrasmall nanogaps for significant electromagnetic enhancement is a long-standing goal of surface-enhanced Raman scattering (SERS) research. However, such electromagnetic enhancement is limited by quantum plasmonics as the gap size… Click to show full abstract

Fabricating ultrasmall nanogaps for significant electromagnetic enhancement is a long-standing goal of surface-enhanced Raman scattering (SERS) research. However, such electromagnetic enhancement is limited by quantum plasmonics as the gap size decreases below the quantum tunneling regime. Here, hexagonal boron nitride (h-BN) is sandwiched as a gap spacer in a nanoparticle-on-mirror (NPoM) structure, effectively blocking electron tunneling. Layer-dependent scattering spectra and theoretical modeling confirm that the electron tunneling effect is screened by monolayer h-BN in a nanocavity. The layer-dependent SERS enhancement factor of h-BN in the NPoM system monotonically increases as the number of layers decreases, which agrees with the prediction by the classical electromagnetic model but not the quantum-corrected model. The ultimate plasmonic enhancement limits are extended in the classical framework in a single-atom-layer gap. These results provide deep insights into the quantum mechanical effects in plasmonic systems, enabling the potential novel applications based on quantum plasmonic.

Keywords: boron nitride; electron tunneling; hexagonal boron; extending plasmonic; plasmonic enhancement

Journal Title: Nano letters
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.