LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Subnanoscale Dual-Site Pd-Pt Layers Make PdPtCu Nanocrystals CO-Tolerant Bipolar Effective Electrocatalysts for Alcohol Fuel Cell Devices.

Photo by sergio_as from unsplash

Finding a high-performance low-Pt bipolar electrocatalyst in actual direct alcohol fuel cells (DAFCs) remains challenging and desirable. Here, we developed a crystalline PdPtCu@amorphous subnanometer Pd-Pt "dual site" layer core-shell structure… Click to show full abstract

Finding a high-performance low-Pt bipolar electrocatalyst in actual direct alcohol fuel cells (DAFCs) remains challenging and desirable. Here, we developed a crystalline PdPtCu@amorphous subnanometer Pd-Pt "dual site" layer core-shell structure for the oxygen reduction reaction (ORR) and alcohol (methanol, ethylene glycol, glycerol, and their mixtures) oxidation reaction (AOR) in an alkaline electrolyte (denoted D-PdPtCu). The prepared D-PdPtCu/C achieved a direct 4-electron ORR pathway, a full oxidation pathway for AOR, and high CO tolerance. The ORR mass activity (MA) of D-PdPtCu/C delivered a 52.8- or 59.3-fold increase over commercial Pt/C or Pd/C, respectively, and no activity loss after 20000 cycles. The D-PdPtCu/C also exhibited much higher AOR MA and stability than Pt/C or Pd/C. Density functional theory revealed the intrinsic nature of a subnanometer Pd-Pt "dual site" surface for ORR and AOR activity enhancement. The D-PdPtCu/C as an effective bipolar electrocatalyst yielded higher peak power densities than commercial Pt/C in actual DAFCs.

Keywords: dual site; pdptcu; alcohol fuel; subnanoscale dual

Journal Title: Nano letters
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.