LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Optically Induced Spin Electromotive Force in a Ferromagnetic-Semiconductor Quantum Well Structure.

Photo from wikipedia

Hybrid structures combining ferromagnetic (FM) and semiconductor constituents have great potential for future applications in the field of spintronics. A systematic approach to study spin-dependent transport in a GaMnAs/GaAs/InGaAs quantum… Click to show full abstract

Hybrid structures combining ferromagnetic (FM) and semiconductor constituents have great potential for future applications in the field of spintronics. A systematic approach to study spin-dependent transport in a GaMnAs/GaAs/InGaAs quantum well (QW) hybrid structure with a few-nanometer-thick GaAs barrier is developed. It is demonstrated that a combination of spin electromotive force measurements and photoluminescence detection provides a powerful tool for studying the properties of such hybrid structures and allows the resolution of the dynamic FM proximity effect on a nanometer scale. The method can be generalized to various systems, including rapidly developing 2D van der Waals materials.

Keywords: structure; ferromagnetic semiconductor; electromotive force; spin electromotive; quantum well

Journal Title: Nano letters
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.